
SS Utility: Quik Intro

Alexey Kuznetosv, kuznet�ms2.inr.a.ru some_negative_number, 20 Sep 2001

ss is one another utility to investigate sokets. Funtionally it is NOT better than netstat ombined with some

perl/awk sripts and though it is surely faster it is not enough to make it muh better. :-) So, stop reading this

now and do not waste your time. Well, ertainly, it proposes some funtionality, whih urrent netstat is still not

able to do, but surely will soon.

1 Why?

/pro interfae is inadequate, unfortunately. When amount of sokets is enough large, netstat or even

plain at /pro/net/tp/ ause nothing but pains and urses. In linux-2.4 the desease beame worse: even

if amount of sokets is small reading /pro/net/tp/ is slow enough.

This utility presents a new approah, whih is supposed to sale well. I am not going to desribe tehnial

details here and will onentrate on desription of the ommand. The only important thing to say is that it

is not so bad idea to load module tp_diag, whih an be found in diretory Modules of iproute2. If you

do not make this ss will work, but it falls bak to /pro and beomes slow like netstat, well, a bit faster

yet (see setion "Some numbers").

2 Old news

In the simplest form ss is equivalent to netstat with some small deviations.

• ss -t -a dumps all TCP sokets

• ss -u -a dumps all UDP sokets

• ss -w -a dumps all RAW sokets

• ss -x -a dumps all UNIX sokets

Option -o shows TCP timers state. Option -e shows some extended information. Et. et. et. Seems, all

the options of netstat related to sokets are supported. Though not AX.25 and other bizarres. :-) If someone

wants, he an make support for denet and ipx. Some rudimentary support for them is already present in

iproute2 libutils, and I will be glad to see these new members.

However, standard funtionality is a bit di�erent:

The �rst: without option -a sokets in states TIME-WAIT and SYN-RECV are skipped too. It is more reasonable

default, I think.

The seond: format of UNIX sokets is di�erent. It oinides with tp/udp. Though standard kernel still

does not allow to see write/read queues and peer address of onneted UNIX sokets, the path doing this

exists.

The third: default is to dump only TCP sokets, rather than all of the types.

3. Time to talk about new funtionality. 2

The next: by default it does not resolve numeri host addresses (like ip)! Resolving is enabled with option

-r. Servie names, usually stored in loal �les, are resolved by default. Also, if servie database does not

ontain referenes to a port, ss queries system rpbind. RPC servies are pre�xed with rp. Resolution of

servies may be suppressed with option -n.

It does not aept "long" options (I dislike them, sorry). So, address family is given with family identi�er

following option -f to be algined to iproute2 onventions. Mostly, it is to allow option parser to parse

addresses orretly, but as side e�et it really limits dumping to sokets supporting only given family. Option

-A followed by list of soket tables to dump is also supported. Logially, id of soket table is di�erent of

address family, whih is another point of inompatibility. So, id is one of all, tp, udp, raw, inet, unix,

paket, netlink. See? Well, inet is just abbreviation for tp|udp|raw and it is not di�ult to guess that

paket allows to look at paket sokets. Atually, there are also some other abbreviations, f.e. unix_dgram

selets only datagram UNIX sokets.

The next: well, I still do not know. :-)

3 Time to talk about new funtionality.

It is builtin �ltering of soket lists.

3.1 Filtering by state.

ss allows to �lter soket states, using keywords state and exlude, followed by some state identi�er.

State identi�er are standard TCP state names (not listed, they are useless for you if you already do not

know them) or abbreviations:

• all - for all the states

• buket - for TCP minisokets (TIME-WAIT|SYN-RECV)

• big - all exept for minisokets

• onneted - not losed and not listening

• synhronized - onneted and not SYN-SENT

F.e. to dump all tp sokets exept SYN-RECV:

ss exlude SYN-RECV

If neither state nor exlude diretives are present, state �lter defaults to all with option -a or to all,

exluding listening, syn-rev, time-wait and losed sokets.

3.2 Filtering by addresses and ports.

Option list may ontain address/port �lter. It is boolean expression whih onsists of boolean operation or,

and, not and prediates. Atually, all the �avors of names for boolean operations are eaten: &, &&, |, ||, !,

3. Time to talk about new funtionality. 3

but do not forget about speial sense given to these symbols by unix shells and esape them orretly, when

used from ommand line.

Prediates may be of the folowing kinds:

• A. Address/port math, where address is heked against mask and port is either wildard or exat.

It is one of:

dst prefix:port

sr prefix:port

sr unix:STRING

sr link:protool:ifindex

sr nl:hannel:pid

Both pre�x and port may be absent or replaed with *, whih means wildard. UNIX soket use more

powerful sheme mathing to soket names by shell wildards. Also, pre�xes unix: and link: may

be omitted, if address family is evident from ontext (with option -x or with -f unix or with unix

keyword)

F.e.

dst 10.0.0.1

dst 10.0.0.1:

dst 10.0.0.1/32:

dst 10.0.0.1:*

are equivalent and mean soket onneted to any port on host 10.0.0.1

dst 10.0.0.0/24:22

sokets onneted to port 22 on network 10.0.0.0...255.

Note that port separated of address with olon, whih reates troubles with IPv6 addresses. Generally,

we interpret the last olon as splitting port. To allow to give IPv6 addresses, trik like used in IPv6

HTTP URLs may be used:

dst [::1℄

are sokets onneted to ::1 on any port

Another way is dst ::1128/. / helps to understand that olon is part of IPv6 address.

Now we an add another alias for dst 10.0.0.1: dst [10.0.0.1℄. :-)

Address may be a DNS name. In this ase all the addresses are looked up (in all the address families,

if it is not limited by option -f or speial address pre�x inet:, inet6) and resulting expression is or

over all of them.

• B. Port expressions:

dport >= :1024

dport != :22

sport < :32000

4. Examples 4

et.

All the relations: <, >, =, >=, =, ==, !=, eq, ge, lt, ne... Use variant whih you like more, but not

forget to esape speial haraters when typing them in ommand line. :-)

Note that port number syntatially oinides to the ase A! You may even add an IP address, but it will

not partiipate inomparison, exept for == and !=, whih are equivalent to orresponding prediates

of type A. F.e. dst 10.0.0.1:22 is equivalent to dport eq 10.0.0.1:22 and not dst 10.0.0.1:22

is equivalent to dport neq 10.0.0.1:22

• C. Keyword autobound. It mathes to sokets bound automatially on loal system.

4 Examples

• 1. List all the tp sokets in state FIN-WAIT-1 for our apahe to network 193.233.7/24 and look at

their timers:

ss -o state fin-wait-1 \(sport = :http or sport = :https \) \

dst 193.233.7/24

Oops, forgot to say that missing logial operation is equivalent to and.

• 2. Well, now look at the rest...

ss -o exl fin-wait-1

ss state fin-wait-1 \(sport neq :http and sport neq :https \) \

or not dst 193.233.7/24

Note that we have to do _two_ alls of ss to do this. State math is always anded to address/port

math. The reason for this is purely tehnial: ss does fast skip of not mathing states before parsing

addresses and I onsider the ability to skip fastly gobs of time-wait and syn-rev sokets as more

important than logial generality.

• 3. So, let's look at all our sokets using autobound ports:

ss -a -A all autobound

• 4. And eventually �nd all the loal proesses onneted to loal X servers:

ss -xp dst "/tmp/.X11-unix/*"

Pardon, this does not work with urrent kernel, pathing is required. But we still an look at server

side:

ss -x sr "/tmp/.X11-unix/*"

5 Returning to ground: real manual

5.1 Command arguments

General format of arguments to ss is:

ss [OPTIONS ℄ [STATE-FILTER ℄ [ADDRESS-FILTER ℄

5. Returning to ground: real manual 5

5.1.1 OPTIONS

OPTIONS is list of single letter options, using ommon unix onventions.

• -h - show help page

• -? - the same, of ourse

• -v, -V - print version of ss and exit

• -s - print summary statistis. This option does not parse soket lists obtaining summary from various

soures. It is useful when amount of sokets is so huge that parsing /pro/net/tp is painful.

• -D FILE - do not display anything, just dump raw information about TCP sokets to FILE after

applying �lters. If FILE is - stdout is used.

• -F FILE - read ontinuation of �lter from FILE. Eah line of FILE is interpreted like single ommand

line option. If FILE is - stdin is used.

• -r - try to resolve numeri address/ports

• -n - do not try to resolve ports

• -o - show some optional information, f.e. TCP timers

• -i - show some infomration spei� to TCP (RTO, ongestion window, slow start threshould et.)

• -e - show even more optional information

• -m - show extended information on memory used by the soket. It is available only with tp_diag

enabled.

• -p - show list of proesses owning the soket

• -f FAMILY - default address family used for parsing addresses. Also this option limits listing to sokets

supporting given address family. Currently the following families are supported: unix, inet, inet6,

link, netlink.

• -4 - alias for -f inet

• -6 - alias for -f inet6

• -0 - alias for -f link

• -A LIST-OF-TABLES - list of soket tables to dump, separated by ommas. The following identi-

�ers are understood: all, inet, tp, udp, raw, unix, paket, netlink, unix_dgram, unix_stream,

paket_raw, paket_dgram.

• -x - alias for -A unix

• -t - alias for -A tp

• -u - alias for -A udp

• -w - alias for -A raw

• -a - show sokets of all the states. By default sokets in states LISTEN, TIME-WAIT, SYN_RECV and

CLOSE are skipped.

• -l - show only sokets in state LISTEN

5. Returning to ground: real manual 6

5.1.2 STATE-FILTER

STATE-FILTER allows to onstrut arbitrary set of states to math. Its syntax is sequene of keywords state

and exlude followed by identi�er of state. Available identi�ers are:

• All standard TCP states: established, syn-sent, syn-rev, fin-wait-1, fin-wait-2, time-wait,

losed, lose-wait, last-ak, listen and losing.

• all - for all the states

• onneted - all the states exept for listen and losed

• synhronized - all the onneted states exept for syn-sent

• buket - states, whih are maintained as minisokets, i.e. time-wait and syn-rev.

• big - opposite to buket

5.1.3 ADDRESS_FILTER

ADDRESS_FILTER is boolean expression with operations and, or and not, whih an be abbreviated in C style

f.e. as &, &&.

Prediates hek soket addresses, both loal and remote. There are the following kinds of prediates:

• dst ADDRESS_PATTERN - mathes remote address and port

• sr ADDRESS_PATTERN - mathes loal address and port

• dport RELOP PORT - ompares remote port to a number

• sport RELOP PORT - ompares loal port to a number

• autobound - heks that soket is bound to an ephemeral port

RELOP is some of <=, >=, == et. To make this more onvinient for use in unix shell, alphabeti FORTRAN-

like notations le, gt et. are aepted as well.

The format and semantis of ADDRESS_PATTERN depends on address family.

• inet - ADDRESS_PATTERN onsists of IP pre�x, optionally followed by olon and port. If pre�x or port

part is absent or replaed with *, this means wildard math.

• inet6 - The same as inet, only pre�x refers to an IPv6 address. Unlike inet olon beomes ambiguous,

so that ss allows to use sheme, like used in URLs, where address is suppounded with [... ℄.

• unix - ADDRESS_PATTERN is shell-style wildard.

• paket - format looks like inet, only interfae index stays instead of port and link layer protool id

instead of address.

• netlink - format looks like inet, only soket pid stays instead of port and netlink hannel instead of

address.

PORT is syntatially ADDRESS_PATTERN with wildard address part. Certainly, it is unde�ned for UNIX

sokets.

5. Returning to ground: real manual 7

5.2 Environment variables

ss allows to hange soure of information using various environment variables:

• PROC_SLABINFO to override /pro/slabinfo

• PROC_NET_TCP to override /pro/net/tp

• PROC_NET_UDP to override /pro/net/udp

• et.

Variable PROC_ROOT allows to hange root of all the /pro/ hierarhy.

Variable TCPDIAG_FILE presribes to open a �le instead of requesting kernel to dump information about

TCP sokets.

This option is used mainly to investigate bug reports, when dumps of �les usually found in /pro/ are

reevied by e-mail.

5.3 Output format

Six olumns. The �rst is Netid, it denotes soket type and transport protool, when it is ambiguous: tp,

udp, raw, u_str is abbreviation for unix_stream, u_dgr for UNIX datagram sokets, nl for netlink, p_raw

and p_dgr for raw and datagram paket sokets. This olumn is optional, it will be hidden, if �lter selets

an unique netid.

The seond olumn is State. Soket state is displayed here. The names are standard TCP names, exept

for UNCONN, whih annot happen for TCP, but normal for not onneted sokets of another types. Again,

this olumn an be hidden.

Then two olumns (Rev-Q and Send-Q) showing amount of data queued for reeive and transmit.

And the last two olumns display loal address and port of the soket and its peer address, if the soket is

onneted.

If options -o, -e or -p were given, options are displayed not in �xed positions but separated by spaes pairs:

option:value. If value is not a single number, it is presented as list of values, enlosed to (...) and

separated with ommas. F.e.

timer:(keepalive,111min,0)

is typial format for TCP timer (option -o).

users:((X,113,3))

is typial for list of users (option -p).

6. Some numbers 8

6 Some numbers

Well, let us use pidentd and a tool ibenh to measure its performane. It is 30 requests per seond here.

Nothing to test, it is too slow. OK, let us path pidentd with path from diretory Pathes. After this it

handles about 4300 requests per seond and beomes handy tool to pollute soket tables with lots of timewait

bukets.

So, eah test starts from pollution tables with 30000 sokets and then doing full dump of the table piped to

w and measuring timings with time:

Results:

• netstat -at - 15.6 seonds

• ss -atr, but without tp_diag - 5.4 seonds

• ss -atr with tp_diag - 0.47 seonds

No omments. Though one omment is neessary, most of time without tp_diag is wasted inside kernel

with ompletely bloked networking. More than 10 seonds, yes. tp_diag does the same work for 100

milliseonds of system time.

	Why?
	Old news
	Time to talk about new functionality.
	Filtering by state.
	Filtering by addresses and ports.

	Examples
	Returning to ground: real manual
	Command arguments
	OPTIONS
	STATE-FILTER
	ADDRESS_FILTER

	Environment variables
	Output format

	Some numbers

